Potential effects of Human Recreation on Abert’s Squirrels and Dusky Grouse: A Pilot Study

Jeremy Dertien
Sarah Reed, Ph.D.
Human Disturbance to Wildlife

- Physiological, behavioral, and demographic effects

- Consumptive
 - Hunting & Fishing
 - Roadkill

- Non-consumptive
 - Hiking
 - Sound effects
Human Recreation Disturbance

- Growing body of evidence for decreased:
 - Abundance, Survival, Occupancy, etc.
- Larson et al. (2016) systematic review of 274 journal articles
 - 93% of articles reported an effect of rec. on wildlife
 - 59% found a significant negative effect
 - Non-motorized more evidence for negative effect than motorized
- 4 million Coloradoans are outdoor recreators
- Boulder = large hiking an mt. biking community
Species of Interest

- Abert’s squirrel (*Sciurus aberti*)
- Dusky Grouse (*Dendragapus obscurus*)
Species of Interest

- Abert’s squirrel (*Sciurus aberti*)
 - Ponderosa pine obligate
 - Food, cover and nesting
 - Does not hibernate or cache large quantities of food
 - Boulder County indicator species
 - Apparent population declines in the Boulder area
Species of Interest

- Dusky Grouse (Dendragapus obscurus)
 - Prefers mixed conifer woodlands (i.e., Douglas fir, aspen & ponderosa stands)
 - Males create low hooting, females chirp
 - Anecdotal evidence populations are increasingly displaced by Boulder development
 - Similar reports from California and Montana
Recreation, Squirrels and Grouse

- Prior study found tree squirrels was significantly lower near trails (Lenth et al. 2008)
- Tree squirrel response to recreation higher in rural than in urban areas (Engelhardt & Weladji 2011)
- Lower occurrence and detections of other grouse species near park entrances and hiking trails (Immitzer et al. 2014, Moss et al. 2014)
Study Objectives & Hypotheses

1) Test the effectiveness of survey methods for the target species

2) Examine relationships between the types and intensity of recreation use and target species detections

- Hypotheses for both species:
 - Detections will be lowest in off-leash < on-leash < no dogs
 - Detections will be higher in areas with hiking only vs. mt. biking and hiking
 - Detections will decrease with increasing recreators
Methods & Materials
Sampling Site Factors

- Sampled 24 different spatially balanced sites

<table>
<thead>
<tr>
<th></th>
<th>Off-leash</th>
<th>On-Leash</th>
<th>No Dogs</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Bikes</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>No Mt. Bikes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study Sites
Recreation Use Surveys & Camera Traps

- Installed cameras on trails
- Sampled recreation for \(\geq 14 \) days
- Classified photos
 - Hiker
 - Biker
 - Dogs
 - On-leash
 - Off-leash
Perpendicular to Trail Line Transects

- 200 m line transects
- 5 transects/site
- 17 1-m² quadrats/transect
 - Abert's feeding sign
- 1 point-center quarter vegetation survey/transect
Sampling Methods: Dusky Grouse

- Dropping counts
 - Same plot design as Abert’s
 - 200 x 1 m strip transect
- Acoustic monitoring
 - 16 GB total memory
 - 30 min → sunrise → 60 min
 - 60 min → sunset → 30 min
 - Used RavenPro to analyze data
- Recorded visual observations
Statistical Analysis

- Two-way ANOVA
 - Species detections vs. permitted activities and dog policies
- Power analysis for sample size
- Two-sample t-test & linear regression
 - Species detections vs. vegetation characteristics and recreation use intensity
Results
Abert’s Squirrel Detections

- Detected feeding sign in 18 of 24 sampling sites
 - $\bar{x} = 4.79$ quadrats/site
- Distance from trail
 - Did not find a relationship
 - $R^2 = 0.003$, $p = 0.847$
Abert’s Squirrel Detections

Mean Detections (±SE)

Off-leash
On-leash
No dogs
Closed

Mountain biking and hiking
Hiking only
Abert’s Squirrel Results

- ANOVA no significant variation in detections
 - Hiking only vs. Mt. bikes ($p = 0.715$)
 - Sample size 3x larger to find an effect of dog policy

- Significantly more detections with:
 - ↑ Large trees ($R^2 = 0.269$, $p = 0.009$)
 - ↓ Douglas fir ($R^2 = 0.177$, $p = 0.041$)
 - ↑ equestrian visitation ($p = 0.008$)
 - ↑ cyclist visitation ($R^2 = 0.179$, $p = 0.039$)
 - ↑ total visitation ($R^2 = 0.181$, $p = 0.038$)
Dusky Grouse Droppings Detections

- Detected droppings at 8 of 24 sites
 - $\bar{x} = 1.38$ line quadrats/site
- Distance from trail
 - Did not find a relationship
 - $R^2 = 0.022$, $p = 0.574$
- Live observations at 7 of 8 sites
Dusky Grouse Droppings Detections

![Bar chart showing mean detections (±SE) for different land use scenarios: Off-leash, On-leash, No dogs, Closed. The chart compares mountain biking and hiking and hiking only, with the latter generally showing higher mean detections.](chart.png)
Dusky Grouse Vocalizations

- Detected probable calls at 5 of 8 sampling sites
 - Detected droppings at all 5 locations
Dusky Grouse Results

- Mixed ANOVA results
 - Hiking only vs. mt. bikes ($p = 0.062$)
 - On-leash vs. off-leash vs. no dogs ($p = 0.180$)
- 3x larger sample size to find an effect of hiking vs. mt. biking
- 4x larger sample size to find an effect of dog policy
- Significantly more detections with:
 - ↓ cyclist visitation ($p = 0.035$)
Discussion
Discussion: Abert’s Squirrels

- Strong correlation between squirrels and vegetation
- Unexpected positive correlation with some recreation
 - Potential habituation with recreation
 - Unmeasured environmental variable
 - Interactions with pine squirrels (*Tamiasciurus hudsonicus*)
 - Mismatched temporal response
 - Activity patterns, physiological condition
- Potential limitations in survey design
Discussion: Dusky Grouse

- Dropping counts and acoustic monitoring were successful in detecting grouse
- Live observations at almost all sites with dropping or acoustic detections
- No grouse droppings in areas that permitted mt. biking
 - Mt. biking visitation levels and other sampling location variables not strongly correlated (e.g., elevation)
Study Design & Conclusions

- All sampling methods were effective
- Large time commitment for each sampling site
- Low number of sample sites (n=24)
 - Several different factors
- Limitations in site placement
- Simplify study design to spatially balanced points
 - 5 circular plots (5 m radius)/ point
 - Droppings and/or acoustic monitoring
 - Distance to trail an easier to define
 - Could incorporate multi-species study at each point
Conclusions

- No effect of recreation on Abert’s squirrels observed from this study
- Effects of recreation on Dusky Grouse warrants further study
 - Improvements in study design should better elucidate potential recreation impacts
 - Multiple detection methods may improve detection probabilities
 - Community-level assessments
Acknowledgements

- Grete Wilson-Henjum, Field Technician
- Susan Spaulding, BCPOS
- Will Keeley, OSMP
- Dave Hoerath, BCPOS
- Michelle Durant, BCPOS
- Courtney Larson, CSU
- Sasha Keyel, CSU
- Jessica Sushinsky, WCS
Multiple forms of outdoor recreation popular in Colorado
- 4 million Coloradoans participate
- 140 million days of activity North Central region (CPW 2013)

Boulder area
- Convenient access to open spaces
- Large hiking and mountain biking community
- What effect is this having on species of interest?
Dusky Grouse Results

- Detected probable calls at 5 of 8 sampling sites
 - Detected droppings at all 5 locations
- Male calls in a 100 – 600 Hz single band
 - Very brief 0.2 – 0.5 seconds
- Female calls up to 5000 Hz broadband signature
 - Variable duration 0.1 – 2 seconds