JOINT STUDY SESSION MEMORANDUM

To: Members of the Colorado Chautauqua Association (CCA) Board Representatives and the Landmarks Board

From: Lesli Ellis, Comprehensive Planning Manager, PH&S, COB
Marcy Cameron, Historic Preservation Planner, PH&S, COB
Michael Matts, Director of Cultural Resources and Operations, CCA

Date: September 11, 2017

Subject: Joint CCA Board Representatives and Landmarks Board Discussion on the Development of the Chautauqua Lighting Plan and Design Guidelines

PURPOSE OF STUDY SESSION
The purpose of the third Joint Study Session with the Colorado Chautauqua Association (CCA) Board Representatives and the Landmarks Board is to gather feedback on the Draft Chautauqua Park Historic District Lighting Design Guidelines. A fourth joint study session will be held on October 4, 2017 to review the Revised Lighting Design Guidelines, before the Final Lighting Design Guidelines are brought to CCA and the Landmarks Board for review and adoption in November. The City of Boulder has hired Bishop Mundus and Clanton and Associates to develop the design guidelines. For information on the background and process for the project, please reference the June 26, 2017 and July 26, 2017 Joint CCA/LB Study Session Memos.

JOINT BOARD DISCUSSION
Staff requests that board members complete the worksheet (Attachment B) by September 8, 2017 in order for staff to structure the Joint Study Session discussion.

1. Do the boards have feedback on the Draft Lighting Design Guidelines Background Document (Attachment A)?

2. Do the boards have feedback on the Draft Lighting Design Guidelines (Attachment B)?

PROJECT PURPOSE AND GOALS
The City of Boulder and the Colorado Chautauqua Association are jointly developing the Chautauqua Lighting Plan and Design Guidelines using the Collaborative Stewardship Framework. The purpose of this project is to aid in decision making for exterior lighting proposals within the boundaries of the Chautauqua Historic District, designated as a local
The document will provide a framework for decision-making through the documentation of the historic use of lighting at Chautauqua, assessment of current needs, guiding principles, recommendations and the development of design guidelines.

PROCESS
The Lighting Plan project has four phases:

1. **Historic Context and Existing Conditions; Development of Project Goals and Draft Lighting Principles (May-June 2017).**
 The initial phase focused on evaluating existing conditions, researching the history of lighting at Chautauqua, assessing the appropriateness and need for lighting, and developing project goals and draft lighting principles.
 - Core Team Meeting #1 – May 23, 2017
 - Working Group Meeting #1 – May 25, 2017
 - Open House and Joint LB/CCA Study Session #1 – June 26, 2017

2. **Character Areas and Desired Qualities (July-August).**
 The second phase includes the development of lighting options, shaped by the historic research, lighting principles, and feedback from the working groups, boards and community members.
 - Core Team Meeting #2 – July 11, 2017
 - Working Group Meeting #2 – July 13, 2017
 - Open House and Joint LB/CCA Study Session #2 – July 26, 2017
 - Evening Walking Tour – August 8, 2017

3. **Draft Design Guidelines (August-October).**
 Following the development of the plan recommendations, the project team will develop specific design guidelines to aid in future decision-making related to exterior lighting within the boundaries of the historic district.
 - Core Team Meeting #3 – August 29, 2017
 - Working Group Meeting #3 – August 31, 2017
 - Public Comment and Joint LB/CCA Study Session #3 – September 11, 2017

4. **Finalize Plan and Design Guidelines (November 2017).**
 The last phase will involve finalizing recommendations and design guidelines based on the consultant work, community, board and working group feedback. The plan will be brought to the Colorado Chautauqua Association Board or Directors and the Landmarks Board for adoption.
 - Core Team Meeting #4 – TBD (Review Revised Design Guidelines)
 - Working Group Meeting #4 – TBD (Review Revised Design Guidelines)
 - Public Comment and Joint LB/CCA Study Session #4 – Oct. 4, 2017
 - Landmarks Board Public Hearing – Review and Adoption – November (TBD)

Following the development and adoption of the plan and design guidelines, Public Works staff will submit a Landmark Alteration Certificate application for the lighting component of the historic district and as a National Historic Landmark.
Community, Culture and Safety tax for review, using the developed design guidelines as a basis for the proposal. The application will be reviewed by the Landmarks Board and the Colorado Chautauqua Buildings and Grounds Committee.

GUIDING PRINCIPLES
The guiding principles were developed through feedback from the interdepartmental staff team and community working group, and revised to incorporate feedback from the community feedback and Joint Study Session on July 26. The Guiding Principles will inform the recommendations and lighting design guidelines.

- Preserve the camp-like character and architectural and historical integrity of the Chautauqua Park Historic District/National Historic Landmark when proposing lighting for the district or surroundings.
- Respect a dark sky environment for Chautauqua that meets or exceeds local regulations and International Dark Sky Association (IDA) guidelines for light level, trespass, pollution and glare.
- Ensure energy efficiency and sustainability in all new and retrofitted lighting proposals.
- Provide lighting only where and when need is clearly identified for safety, security, programming, accessibility or wayfinding, using the basic approach of providing a balance or consistency of light through use of light color and levels, controls, and placement of fixtures.
- Maintain dark areas within Chautauqua and surroundings to protect wildlife, open spaces and park areas, and scenic viewsheds.

FEEDBACK ON THE DRAFT DESIGN GUIDELINES
On August 29 and August 31, and staff Core Team and community Working Group reviewed the draft design guidelines and background document. Their comments following the meetings will be compiled and sent to the boards prior to the September 11 Joint Study Session. In general, we heard positive feedback on the background document, specifically the history of lighting section and the guiding principles. The discussions on the Draft Design Guidelines included suggestions to clarify the intent of specific design guidelines, and ensuring the technical specifications were explained in the narrative and glossary so the document will be understandable for laypeople as well as lighting experts.

DRAFT DESIGN GUIDELINES
The boards are being asked to provide feedback on two components of the Lighting Design Guidelines: the background document and the design guidelines. The final product combine these documents, though the Design Guidelines portion will have the ability to be a stand-alone document with the lighting principles and design guidelines for easy reference by applicants, staff and board members.

The Draft Design Guidelines document provides background information on lighting at Chautauqua, including an existing lighting assessment, history of lighting and a recommended approach to exterior lighting within the boundaries of the historic district. See Attachment A: Draft Design Guidelines Document.
The Draft Design Guidelines are intended to assist applicants as they plan changes to exterior lighting, and provide the Landmarks Board and CCA Buildings and Grounds Committee with a framework for making consistent decisions in its review of projects. See Attachment A: Draft Design Guidelines - Worksheet.

Staff requests that board members complete the worksheet (Attachment B) by September 8, 2017 in order for staff to structure the Joint Study Session discussion.

NEXT STEPS
A fourth and final joint study session will be held on October 4, 2017 to review the Revised Lighting Design Guidelines, before the Final Lighting Design Guidelines are brought to CCA and the Landmarks Board for review and adoption in November.

In addition to the open houses, community members may also provide input through our project webpage: https://bouldercolorado.gov/historic-preservation/chautauqualightingplan.

Contact Marcy Cameron, City of Boulder Historic Preservation Planner, or Michael Matts, CCA Director of Cultural Resources and Operations with questions or comments on the process.
Marcy Cameron - cameronm@bouldercolorado.gov or (303) 441-3209.
Michael Matts - michael.matts@chautauqua.com or (303) 513-300-1512.

ATTACHMENTS
A: Draft Design Guidelines Document
B: Draft Design Guidelines - Worksheet
Acknowledgements
Thanks to the collaborative efforts of the Colorado Chautauqua Association, City of Boulder staff, working group and core team members, and community members who provided input into the guidelines.

Working Group Members
Abby Daniels, Historic Boulder, Inc.
Ben Gilbert, Colorado Chautauqua Cottagers
Karl Anuta, Friends of Chautauqua
Kathryn Barth, Friends of Chautauqua
Dan Corson, Former LB member and neighbor
Korbin Pugh, History Colorado
Cosima Krueger-Cunningham, Sierra Club- Indian Peaks Chapter

Core Team Members
Marcy Cameron, Historic Preservation Planner, PH&S/Project Manager
Michael Matts, Colorado Chautauqua Association/Project Manager
Jeff Medanich, Colorado Chautauqua Association
Jeff Haley, Parks and Recreation
James Hewat, Historic Preservation, PH&S
Ben Irwin, Communications
Gretchen King, Communications
Joe Paulson, Public Works
Ericka Pilcher, Open Space and Mountain Parks
Joel Wagner, Finance

Landmarks Board
Eric Budd, Bill Jellick, Ronnie Pelusio, Fran Sheets, Deborah Yin

CCA Representatives
Tom Thorpe, Nan Anderson, John Kenyon, Kristin Lewis, Barbara Guthery

CCA Board of Directors
Placeholder text

Consultants
Tina Bishop, Principal, Mundus Bishop
Shelby Scharen, Mundus Bishop
Kate Bolton, Mundus Bishop
David Roederer, Clanton and Associates

Historic Photographs
Carnegie Branch Library for Local History
TABLE OF CONTENTS

Development of the Design Guidelines
- Project Purpose, Goals and Objectives .. 4
- Process .. 5
- Study Area and Surroundings (Map) .. 6

History of Lighting at Chautauqua
- Overview ... 18
- Summary of Lighting at the Colorado Chautauqua 11
- Lighting Chronology ... 15

Existing Conditions Assessment
- Map of Existing Lighting ... 18

Needs Assessment
- Lighting Needs ... 23

Recommended Approaches to Lighting
- Map of Lighting Areas at Chautauqua 28
- Guiding Principles .. 29

Lighting Design Guidelines
- Introduction .. TBD
- Design Guidelines ... TBD
- Glossary ... TBD

Appendices
- A. Historic Photographs ... TBD
- B. Bibliography ... TBD
- C. Feedback .. TBD
DEVELOPMENT OF THE LIGHTING DESIGN GUIDELINES

The Colorado Chautauqua was founded in 1898 as an educational, artistic and cultural retreat as part of the national Chautauqua movement. In 1978, the 40-acre site was designated as a National Register and local historic district, and in 2006, it was designated as a National Historic Landmark, the 24th in the state of Colorado.

In 2017, the Colorado Chautauqua Association (CCA) and the City of Boulder undertook the development of lighting design guidelines for Chautauqua, guided by the Guiding Principles for Collaborative Place Management and Fiscal Sustainability (2012). The development of these guidelines was led by consultants Mundus Bishop and Clanton and Associates and was informed by input from a Community Working Group, Staff Core Team, public open houses, and joint study sessions between representatives of the CCA and the City of Boulder Landmarks Board.

The Lighting Design Guidelines are intended to assist applicants in planning for changes to exterior lighting within the Chautauqua Park Historic District and to provide the City of Boulder's Landmarks Board and the CCA's Building and Grounds Committee with a framework for making informed decisions that will ensure that lighting improvements are appropriate to the special character of the place, while providing reasonable safety, security and wayfinding for its stewards and users. This document provides a history of lighting within Chautauqua, an assessment of current lighting conditions, expressed needs for lighting from a variety of users, guiding principles and desired lighting qualities that were used to inform the design guidelines.

This work builds upon prior research and planning documents for the Chautauqua Historic District including the National Register Nomination (1978); National Historic Landmark Nomination (2006); Chautauqua Park Historic District Cultural Landscape Assessment and Plan (2004); the Chautauqua Park Historic District Design Guidelines (1989); and the Chautauqua Landscape Design Guidelines (2012). In 2012, a Master Exterior Lighting Plan (MELP) was created by the CCA to establish an exterior lighting system at Chautauqua; however this plan did not fully examine the historic context or appropriateness of lighting. It is these issues that this document seeks to fully address.
Process

In early 2017, the Staff Core Team and Community Working Group were formed. The Staff Core Team was composed of representatives from the CCA, as well as from Public Works, Open Space and Mountain Parks, Parks and Recreation, Planning, Housing and Sustainability, Finance, and Communications. The Community Working Group was composed of representatives of Friends of Chautauqua, Historic Boulder, Inc., History Colorado, Chautauqua Cottagers, and the Sierra Club – Indian Peaks Chapter. Both groups met regularly through the process, and their input was integrated into the design guidelines. [Four] Joint Study Sessions between representatives of the CCA and the City of Boulder Landmarks Board were held over the course of the project.

Two open houses were held in tandem with the first two Joint Study Sessions. Additionally, the project team reached out to Dining Hall staff and concert-goers to gather input from different user groups. An online survey collected additional input.

The Lighting Design Guidelines were developed in four phases:

1. History of Lighting and Existing Conditions; Development of Project Goals and Draft Lighting Principles.
 The initial phase focused on evaluating existing conditions, researching the history of lighting at Chautauqua, assessing the appropriateness and need for lighting, developing project goals and draft lighting principles.

2. Development of Character Areas and Desired Qualities.
 The second phase included the development of draft character areas and draft desired lighting qualities, shaped by the lighting principles and feedback from the working groups, boards and community members.

3. Draft Design Guidelines
 Following the development of the guiding principles and desired qualities, the consultant created specific design guidelines to aid in future decision-making related to exterior lighting within the boundaries of the historic district.

4. Finalize Plan and Design Guidelines
 The last phase involved finalizing design guidelines document based on the consultant work, community, board and working group feedback. The Lighting Design Guidelines was brought to the Colorado Chautauqua Association Board of Directors and the Landmarks Board for adoption.
Study Area and Surroundings

The Chautauqua Historic District is located in Boulder, Colorado, at the foot of Green Mountain. It was established in 1898 as an educational, artistic and cultural retreat as part of the national chautauqua movement. The Chautauqua Historic District is one of a few remaining chautauquas in the United States. Its grounds, roads, cottages, and public buildings comprise an area of 40 acres bordered on three sides by City of Boulder Open Space and Mountain Parks. The Chautauqua Historic District is listed in the National Register of Historic Places (1978), designated as a local historic district (1978), and as a National Historic Landmark (2006). It has been in continuous operation since its founding, under the joint stewardship of the Colorado Chautauqua Association (CCA) and the City of Boulder, and retains historic integrity with its historic buildings, structures, and grounds intact.

The City of Boulder owns the 40-acre parcel that encompasses the Chautauqua Historic District and also the Auditorium, Dining Hall and Academic Hall. CCA leases those three buildings and 28 acres of grounds from the City, and owns 60 cottages and two lodges, which it makes available for nightly lodging or longer term rental. CCA also owns the Community House which is made available for various public and private events and meetings. CCA holds sub-lease agreements with 40 privately-owned cottages located throughout the leasehold. CCA manages the Dining Hall, the Auditorium and Academic Hall; the City manages the public park and open space. The Chautauqua Historic District is home to summer and, increasingly, winter residents who reside in its cottages, most of which are historic.

For purposes of this document the Chautauqua Historic District is divided into the Study Area and Context Area:

The **Study Area** includes the CCA leasehold area, Chautauqua Green, and portions of Chautauqua Open Space. The study area includes the 40 acre parcel roughly triangular in shape that extends from Baseline Road on the north into the City of Boulder Open Space and Mountain Parks on the south.

The **Context Area** is the transition area around the study area that influences or could be influenced by lighting within the study area. The transition area is generally defined as the neighborhoods or public lands immediately adjacent to Chautauqua Historic District (Baseline Road, east and west of the study area; 12th Street; and neighborhoods to the north; and the edge at Chautauqua Open Space). This area provides a context for guidelines and recommendations for the Chautauqua Historic District but no specific guidelines are developed for this context area.
History of Lighting at Chautauqua
Horse and buggy parking area, with hanging light at center background, circa 1898

Pendant light at Wildrose Road and Academic Hall Fountain, circa 1900
HISTORY OF LIGHTING AT CHAUTAUQUA

The Colorado Chautauqua was founded in 1898 as the Texas-Colorado Chautauqua. The founders established the property and the program with great attention to the “Chautauqua Idea”: learning for all, cultural entertainment, and leisure in a natural and inspiring setting. Chautauqua was originally established as a seasonal camp for teachers from Texas and their families, among others. At a time when primary and secondary teacher training was rudimentary or non-existent, chautauquas brought post-secondary education to millions and teacher training to thousands. Chautauquas brought prominent speakers, high culture, and popular entertainments to non-urban areas. While cities were growing more congested, chautauquas emphasized the benefits of outdoor life.¹

Its location on the eastern edge of the Rocky Mountains represents the westward spread of the movement, and today it remains the only independent assembly in continuous operation in the Western United States, with grounds always having been open and free for public enjoyment.

The setting of Boulder’s Chautauqua has remained essentially as it was in 1898. Its sites, buildings, and structures are intact, the property tells a cohesive narrative, and its grounds are open to the general public. Today, visitors experience the Colorado Chautauqua much as it was at the height of the Chautauqua Movement.² It continues to be home for summer and winter residents whom reside in its historic cottages. The Chautauqua Green is an important and popular Boulder park.

The architectural and historic significance of the Colorado Chautauqua has been recognized through local historic landmark and National Historic Landmark designation. The identified period of significance from 1898 to 1930 marks the foundation of the Colorado Chautauqua through its height and subsequent decline of the Chautauqua Movement as a whole.

History of Lighting at the Colorado Chautauqua

The introduction of electric lighting at Chautauqua in 1898 followed the development of lighting in Boulder. Electric lights were first installed in downtown Boulder in 1886, though funding by private business owners, who sought to reduce the need to carry personal lanterns “to avoid falling in mud-holes or irrigation ditches.”³

¹ Colorado Chautauqua NHL Registration Form, 46.
² Colorado Chautauqua NHL Registration Form, 60.
Lighting at Dining Hall at left side of photograph, circa 1898

Lighting outside of Mariposa Cottage (34), circa 1900
In 1890, the Boulder City Council passed a motion to build 27 street lights in collaboration with the Electric Light Company. The Boulder County HERALD reported on this development in an article entitled “Splendidly Lighted: Boulder to Have Twenty-Seven Arc Lights on the Streets,” in which they describe security as being an “important element” of the lighting installation, as well as the experiential quality of arriving to a lit town, which they considered to be impressive, grand, friendly and warm. The paper considered “the move a grand, good one.” These sources indicate that electric street lighting was viewed as mainly utilitarian in nature and also signified safety, comfort, and enjoyment of a place at night time.

Lighting at Chautauqua was also regarded as adding to the beauty of the place: “There were few buildings or trees between the University and the Chautauqua grounds, and the ‘brilliant cluster’ of the lights glittered, according to one reporter, ‘like so many gems in the distance.’”

The Boulder County HERALD reported in June of 1899 that the “The Chautauqua grounds were lighted up last night with arc lights for the first time this year. They looked exceedingly beautiful.” The original lighting fixtures were mounted to tall wooden electrical poles and supplied lighting to key locations within the campus, including the Dining Hall, Auditorium, and parking area. The lighting poles and fixtures appear to be utilitarian in style, and did not provide any daytime aesthetic or decorative purpose.

Historic photographs show utility poles with suspended luminaires and literature refers to arc lights at the Chautauqua. Arc lamps were astringent and brilliant, with a very high color temperature and a very small source. They were much more powerful than the contemporary incandescent lamps of the time. The lit areas directly below an arc lamp would have been very bright with distinct shadows. The wide spacing of the lights would have had very high ratios of uniformity so that spaces between lit areas would seem very dark. The surrounding context was dark, with the night sky and foothills as a background, so the contrast between illuminated and dark areas would have been very great. Photographs indicate little or no shielding to the lights, so the output was not controlled but cast an even amount of light in most directions. Overall, the original lighting at Chautauqua would have been glary and the uniformity very wide.

4 “Splendidly Lighted: Boulder to Have Twenty-Seven Arc Lights on the Streets.” Boulder County HERALD, November 19, 1890.
5 Pettem, Silvia. Chautauqua Centennial: A Hundred Years of Program. 4.
6 Boulder County HERALD, June 28, 1899.
Historic lighting locations, 1920 to 1928
LIGHTING CHRONOLOGY

1898

1898 Newspaper accounts confirm that there were lights and electricity to the camp since the inaugural season. Electrical poles with areas of tents are visible in 1898 historic photographs. These appear to be tall poles that provide lighting for specific areas at the interior of the campus. The fixtures appear as a cone-shaped pendant. Not all poles had a light. Light fixtures appear at major points of interest and gathering (parking area, Dining Hall).

c.1900

1900 Photograph indicates a pole with simple light fixture for area lighting on Wildrose Road. A view of the buggy parking shows a single wooden pole with a simple pendant, along with other electrical poles (not all had lighting, but there were at least 2 along this road).

A series of poles line both sides of the entry drive from Baseline Road to the Dining Hall. These appear to be for electricity, but it is unconfirmed how many of them may have incorporated lighting.

A photograph from August 1900 shows a pendant light north of the Academic Hall adjacent to the Academic Hall Fountain.

1903

1903 Photograph shows electrical poles visible at Tennis Court, within tent and cottage areas, and at edges of the campus. These poles appear to be electric poles only and likely did not provide exterior lighting to these areas.

c.1910

Photograph indicates a painted wooden pole with a pendant light located between the Dining Hall and the Auditorium. Another photograph from the same time shows a pendant light on Clematis Drive. There does not appear to have been any lighting on the east side of the campus.

1911

King’s Gate was built with columns, topped by open air ‘lights.’ There is no evidence that these had electricity or were ever lit; they were likely just decorative caps.

1914

Photograph of the Auditorium shows a pendant light on the Northeast side of the building.

1918

Sanborn map indicates “lights, electrical” for the Auditorium and Dining Hall.

c.1920

Lighting was expanded in select spaces. Pendant lights changed to a hanging globe light, but lights were still located on tall electrical poles, which were unornamented and functional.
Repair and infrastructure improvements included winterization of many cottages, and the installation of plumbing and heating. Electrical service was upgraded and exterior lighting was replaced, including the addition of the globe lighting fixtures at the Northwest entrance to the Auditorium. It is uncertain as to whether these fixtures (remaining) were viewed as decorative at the time, or simply beacons to welcome visitors to the Auditorium. Photographs show wood posts with double or singular cross bars for the electrical system, indicating that in general lighting continued to be utilitarian, with fixtures mounted to electrical poles.

Photographs indicate cobrahead lighting was installed in this period and continues to be used at Chautauqua.

1976 – The Auditorium was rehabilitated, and electrical service was upgraded. Modern street lights were installed.

1998 – Pedestrian-scaled, acorn shaped fixtures added at Auditorium, Dining Hall and along Clematis Drive.
Existing Conditions Assessment
Existing Lighting
EXISTING CONDITIONS ASSESSMENT

[Intro paragraph about general lighting quality at Chautauqua]

Public Spaces

- The brightest areas on the campus, by comparison, are created in these areas with acorn and globe style luminaires mounted on decorative fluted poles. This higher level of lighting creates a visual destination, aiding wayfinding. It is easy to see one’s way in these areas and there is a sense of safety. The globe light fixtures on the northwest side of the Auditorium were added in the 1940s, and the acorn pedestrian lighting in 1998. Some of the acorn poles have dedication placards as people have made donations for them.

- Near the Auditorium and Dining Hall ambient lighting is created with these acorns and globes. Additional lighting around the Dining Hall is spill light from porch ceiling mounted and scone luminaires.

- These public buildings also have various egress luminaires at exits.

- The auditorium has some architectural accent lighting.

- The light sources are warm compact fluorescent or LED retrofit bulbs, with good color rendering (>75 CRI)

- The ambient lighting luminaires are not Dark-Sky Friendly and operate dusk to dawn every day. The Dining Hall porch lights are controlled by the porch ceiling minimizing spill into the sky.

The bulbs are medium wattage gaged by their brightness and do not cause glare.
Residential

- Minimal lighting from high pressure sodium cobrahead streetlights at intersections supplemented by porchlights on cabins. The streetlights are owned and maintained by Xcel and are mounted on wooden utility poles. The east-west streets typically become darker at mid-block making seeing difficult for pedestrians walking in the street. The porch lights add some visual brightness, but no illuminance in the street.

- The light sources are warm, high pressure sodium in the streetlights and incandescent, compact fluorescent or LED bulbs at the cottages. While the streetlights can be mildly glary due to their high wattage, the eclectic mix of porch lights are visually interesting.

- The streetlights are Dark-Sky Friendly, with one or two exceptions, if installed correctly. Porch lights are typically not Dark-Sky Friendly with translucent diffusers.

- Cottage occupants typically control the porchlights.

Parking / Vehicular

- There are four off-street parking areas, none of which are illuminated consistently:

 - The Academic Hall lot lit by spill from two nearby streetlights, it is possible to find one’s car, but the lighting is minimal.

 - The Half-Moon lot is not lit. Light from a nearby streetlight on 12th street is shadowed by a large tree.

 - The Overflow/Tennis lot has residential grade LED floodlights controlled by integral motion sensors with unreliable operation. This area is surrounded and isolated by vegetation and accessed by a winding path or steep stairway. Safety and security are both minimal here.

 - The Ranger Cottage parking area is lit from a single cobrahead streetlight located at the trailhead.

- Streets are lit by cobrahead luminaires at intersections and parking pull-outs on Sumac Drive which does allow wayfinding for pedestrians around the green.

- The streetlights are warm high pressure sodium, the floodlights are cool color LED sources and can be very glary due to the low mounting height necessitating a low aiming angle.

- The streetlights are Dark-Sky Friendly. The floodlights are not.

- The streetlights are operated Dusk to Dawn. The floodlights are intermittent and unreliable.
Primary Pedestrian

- Primary Paths: There is no dedicated pedestrian path lighting. Near the Auditorium and Dining Hall the acorn and globe style luminaires provide adequate illumination to navigate between buildings but minimal to no lighting between the Dining Hall to the Arbor, and onto the Trolley Station/Kings Gate.

- Secondary Paths: In residential areas there are no paths and pedestrians use the streets to travel. The streetlights provide way-finding lighting supplemented by the porchlights.

Park

- Chautauqua Green, Waterwise Garden, and Centennial Garden are lit by spill from adjacent lighting, and Centennial Garden additionally has four compact fluorescent landscape uplights. They are all dark spaces and yet are comfortable due to light from outside the park areas.

- The at-grade uplights at the Centennial Garden negatively impacts pedestrian visibility and experience at night. They are not Dark Sky Friendly and are a source of glare.

Open Space

These spaces are not currently illuminated and provide a dark nighttime experience. There is little light trespass or glare, dependent on orientation (one can see the city lights) and depth into the Open Space. Stars are readily visible.

Baseline

There are currently cobrahead style streetlights at each crosswalk. The lighting levels are adequate for pedestrian/vehicular safety at a minimal level, the single light at each crosswalk does not provide preferable 3-dimensional lighting.
Needs Assessment
Chautauqua Lighting Design Guidelines

Lighting Needs

The cultural and educational mission of the Chautauqua continues today through concerts, lectures, and social events. Use tends to peak during the summer, however, the Dining Hall and special events draw people to Chautauqua year-round and at various times during the day. In 2016, forty community events were held at the Community House in the evening, hosting 4,675 attendees. Numerous private events, including wedding receptions and award programs were also held.

Visitors and newcomers alike enjoy the different amenities Chautauqua has to offer. Over 40,000 people attended performances at the Auditorium in 2016 and the Dining Hall averages 3,500 customers per week. Staff and volunteers support various activities and events, often arriving earlier and staying later than the scheduled event times. Cottagers, lodging guests and hikers navigate through the historic district on a regular basis.

In their joint stewardship, the City of Boulder and the CCA are tasked with carefully considering changes to this special historic place. Acknowledging the increased number of evening events and the diverse set of users, including people of all ages and abilities, the design of exterior lighting should have the least amount of impact while meeting the safety, security and wayfinding needs that have been expressed through this process.

Needs Assessment

Input was gathered over the course of the development of the Lighting Design Guidelines through meetings, study sessions, open houses, a feedback booth, and surveys. Participants included representatives of five city departments and CCA staff, five community groups, the Landmarks Board and CCA Board of Directors, community members, concert-goers and Dining Hall employees.

While there was a wide variety of opinions, there was general agreement in a number of areas. Namely, that a conservative approach to lighting is appropriate, that different areas of Chautauqua require specialized approaches to lighting, that the need for lighting should be clearly documented.

In terms of lighting qualities, the majority of participants considered that lighting approaches should minimize light pollution and light trespass, and provide lighting only when and where it is necessary. To that end, there were many suggestions that lights be programmed to be turned off when they are not needed.
Most participants indicated that lighting is needed for safety (tripping hazards) and wayfinding. While there were many people who considered lighting is not needed for security purposes, the majority of Dining Hall employees expressed a desire for increased lighting between the Dining Hall and the Tennis Court Parking Lot, which they typically access late at night and early in the morning.

Public Spaces

Public spaces, including the Auditorium, Dining Hall and Community House, are regularly programmed for evening public use and are destinations for community members and visitors of many ages and abilities. As such, there exists a greater need for lighting than other areas. Many participants indicated that the quality of lighting (glare, spill, color temperature) could be improved at the Auditorium and Dining Hall.

Lighting at Public Spaces should facilitate wayfinding, and address safety concerns by illuminating tripping hazards such as stairs and curbs. In some public spaces, additional safety and wayfinding lighting may be necessary, where in other areas existing lighting may be too bright and unpleasant and may be reduced.

Residential

Residential areas have a need for lighting to provide safe walking areas and pedestrian navigation at night, but residents have expressed concern that they would not like this area to be brightly illuminated. Currently, portions of the campus are difficult to navigate by pedestrians due to inconsistent lighting – glare from inappropriately sited and angled lights, in contrast to dark areas that obscure stone swales, rocks, and uneven walking surfaces that are characteristic of the historic district.

Porch lights are not consistent, and cannot be relied upon to adequately provide light in the residential areas.

Appropriate lighting levels are needed to facilitate safe movement for drivers and pedestrians. Pedestrian safety includes the ability to navigate in the dark with a minimization of tripping hazards. Safety issues include the need for adequate lighting at pedestrian intersections, to minimize accidents with vehicular traffic.
Parking/Vehicular Circulation

In general, participants indicated that street-lights, located at key intersections, provided adequate lighting, but that the fixtures could be improved by reducing the level of spill onto lawns and into houses.

Improved lighting is needed at the Tennis Court parking lot to provide a consistent level of light to see one’s car, and to address security concerns of employees and volunteers that use this lot. Stairs and other tripping hazards should be adequately lit.

Primary Pedestrian

The network of sidewalks are used on a daily basis by concert-goers, Dining Hall and Colorado Music Festival employees and volunteers, residents and visitors of all ages and abilities. Lighting is needed for wayfinding and to reduce tripping hazards (safety). Some participants indicated that lighting was needed at the Arbor, between King’s Gate and the Auditorium, for security reasons.

Park

The center of Chautauqua Green has historically not been lit, and there is not a need to introduce lighting there. The area should remain un-lit to maintain the historical and architectural integrity of the historic district. Minimal light exists in the Centennial and Waterwise Gardens, which provides appropriate wayfinding.

Open Space

All participants agreed that the Open Space surrounding the historic district should remain dark, to protect wildlife, open spaces and park areas, and scenic viewsheds.

Baseline

Additional lighting would facilitate safer pedestrian crossings at Baseline. Some participants considered lighting to be needed at the bus stops and at the bus shelter.

The feedback gathered over the course of the project shaped the recommended approaches to lighting and the lighting design guidelines.
Recommended Approaches to Lighting
Lighting Areas at Chautauqua
LIGHTING AREAS

Seven Lighting Areas have been identified to acknowledge the variety of spaces and uses within the Chautauqua Historic District. Each have distinct approaches to exterior lighting. The lighting areas are intended to be broad, illustrative and not to represent firm boundaries; some locations may fall into two lighting areas. The lighting areas include the following.

1. Public Spaces - most used areas, frequently visited by non-residents, including areas surrounding public buildings: Auditorium, Dining Hall, Academic Hall, Community House and the Picnic Shelter.

2. Residential - Cottage areas at the southern portion of campus including roads within this area.

3. Parking/Vehicular - Parking areas; major intersections; tennis court; Academic Hall parking; 12th St. between Picnic Shelter and Tennis Court parking.

4. Primary Pedestrian - Key pedestrian crossings; select pedestrian circulation routes and sidewalks; Auditorium to Kings Gate; Dining Hall to Tennis Courts; South side of Clematis.

5. Park - Chautauqua Green; Waterwise Garden; Centennial Garden. For the purpose of lighting design guidelines, the Picnic Shelter is categorized as a park space due to its similar lack of night-time programming.

6. Open Space - Land administrated by Boulder Open Space and Mountain Parks.

7. Baseline - Perimeter and exterior of historic district boundary.

The existing condition evaluation of the lighting areas identifies inadequacies, specifically where lighting does and does not meet needs. Through stakeholder and community consultation, examples of these existing conditions illustrate considered desirable and undesirable lighting conditions.
Arc Lamp: A lamp that produces light by an electric arc between carbon electrodes in air. It was widely used starting in the 1870s for street lighting, this image is a typical 19th-century arc light. See Figure G.1.

Ambient Lighting: Light that serves as general illumination for a space for basic visual recognition and travel through that space.

Architectural Lighting: Lighting techniques using the structure of a form to create visible luminance. Fixtures maybe designed into the construction of the building or structure itself or light may be cast upon it. Techniques may include:

Accent Lighting: Precise lighting used to highlight a specific object or building detail.

Facade Lighting: The illumination of the exterior of a building.

Graze Lighting: Casting light in a parallel plane to a surface to reveal the texture of that surface.

Wall Washing: Uniformly illuminating a vertical planer surface with an even wash of light creating a luminous background.

Wall washing and grazing are two techniques for adding perceived brightness to an area without glare. Lighting walls can make spaces appear brighter and more inviting.

Brightness: The extent to which an object is judged to emit more or less light. The perceived brightness of an object can change depending on whether it is seen against a light or dark background due to contrast.

Bug Rating: A rating based on the lighting output in Backlight, Uplight and Glare zones. (Supersedes cutoff classifications). See Figure G.2.

Color Rendering Index (CRI): A measurement, on a scale of 1 to 100, used to describe the ability of a light source to render all colors accurately.

Color Temperature (CCT): A measure in degrees Kelvin (°K) of light’s warmness or coolness. Lamps with a CCT of less than 3,200 °K are yellowish-white and considered warm. Lamps with a CCT greater than 4,000 °K are bluish-white and considered cool. Often referred to as CCT (correlated color temperature). Describes the overall color appearance of a light source. See Figure G.3.

Cutoff Classification: Classification for controlling stray light. See Figure G.5.
Dark-Sky Lighting: Lighting efforts to minimize the harmful effects of light pollution. Only be on when needed. Only light the area that needs it. Be no brighter than necessary. Minimize blue light emissions. Be fully shielded (pointing downward), Full Cutoff or BUG Rating = B_-U0-G_.

Footcandle, FC: The unit of illuminance when the foot is taken as the unit of length. The illuminance on a surface one square foot in area on which there is a uniformly distributed flux of one lumen, or the illuminance produced on a surface, all points of which are at a distance of one foot from a directionally uniform point source of one candela.

Fully Shielded Fixture:

1. A fixture that allows no emission above a horizontal plane through the fixture (for Dark-Sky).
2. An opaque shield restriction the view of a light source.
3. A translucent diffuser obscuring the view of a light source.

Glare: An interference with visual perception caused by an uncomfortably bright light source or reflection within a person’s field of view; a form of visual noise. A light within the field of vision that is brighter than the brightness to which the eyes are adapted. Very high contrast. As we age our eyes are more susceptible to glare.

Disability Glare: Glare resulting in reduced visual performance and visibility. It is often accompanied by discomfort.

Discomfort Glare: Glare that produces discomfort, but does not necessarily diminish visual performance.

Illuminance: Light on a surface or object. Sometimes called “illumination.” Unit is footcandle or lux.

Light Pollution: Any adverse effect of artificial light. Examples include light into the night sky creating sky-glow and obscuring the view of stars.

Light Trespass: Light falling where it is not wanted or needed. Examples include streetlighting into a residential window or residential lighting spilling into a natural area with nocturnal biotic.

Luminaire: A complete light fixture with source, mounting, shielding and housing.

Luminance: The light given off a surface or object, whether produced or reflected. See Figure G.4.

Figure G.4. Luminance diagram
Figure G.3. Color Temperature Spectrum

Figure G.5. Cutoff Classifications
Pathway Lighting: The illumination of a pedestrian route. There are two basic approaches to lighting a pathway:

Continuous: Even lighting having good uniformity from beginning to end creating an uninterrupted corridor of illumination. Uniformity ratios should not exceed 10:1.

Wayfinding: Points of light at the beginning and end of a Pathway with low light levels in-between so that a pedestrian may find their way even through the darker areas. Additional points of light may be supplemented at possible points of conflict or around curves limiting visibility, etc. Wide uniformity in the light levels. The greatest uniformity should be 15:1 (conforms to Boulder Lighting Ordinance).

Three-Dimensional Lighting: Illuminating an object or person from more than one location to reveal the full form through height, width, and depth.

Two-Dimensional Lighting: Illuminating an object or person from a single location to create a silhouette or halo effect.

Uniformity: The ratio between the darkest point and brightest point. The lower the ratio the more uniform the lighting.
<table>
<thead>
<tr>
<th>Agree</th>
<th>Disagree</th>
<th>Minor Editing</th>
</tr>
</thead>
</table>

1. General Lighting Design Guidelines

1.1 Improve existing lighting by modifying or removing inappropriate luminaires.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. Ensure existing and new luminaires are properly installed so light is directed downwards and does not spill onto adjacent areas.
- b. Where vegetation obscures existing light, either trim vegetation or reposition luminaires so output is not obscured.
- c. Remove existing luminaires within the historic district that distract from the historic setting, obscure views, or provide a false sense of history.
- d. Eliminate up-lighting or directional lighting that is not Dark Sky compliant.

1.2 Approach lighting holistically to avoid incremental change that may lead to a higher overall illumination of the historic district.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. In new lighting proposals, consider lighting either by building or area, taking into consideration the overall impact of existing and proposed illumination. Consider ambient light from adjacent buildings and fixtures.
- b. Provide a consistency of luminaire design and aesthetic within the historic district. Lighting qualities, including color temperature, should have a consistent warmth and appearance across the landscape.
- c. Consideration should be given to users with visual impairments, and the variety of users in age and ability.

1.3 Preserve the night sky, architectural character, views, and historic integrity of the historic district by only lighting areas and features when and where needed.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. Avoid lighting where it is not required, and illuminate only where need has been clearly established.
- b. Indiscriminately lighting or over-illuminating building facades or front yards or park spaces is not appropriate.
- c. Avoid light spill onto adjacent properties outside of the historic district.
- d. Turn on lights only when needed.
- e. Design lighting utilizing Dark Sky Qualities, including the following:
 - Lights should be no brighter than necessary.
 - Fixtures should have limited spill, be Full Cuttoff or have a B-U-G Rating with Uplight=0.

Section intentionally left blank
1. General Lighting Design Guidelines (continued)

| 1.4 | Design lighting to facilitate navigation and address safety concerns for pedestrians to find their way.
 a. Locate new fixtures at destination points with points of light at the beginning and end so a pedestrian may find their way.
 - Consider additional points of light at points of conflict or around curves.
 - The greatest uniformity should not exceed 15:1.
 b. Consider ambient light from adjacent buildings and fixtures when designing new lighting. |
| 1.5 | Utilize programmable controls to turn off lights when they are not needed and to dim the output for the time of night and occasion.
 a. Recognize the variety and use of the campus throughout the week/year and modify lighting times and locations as needed.
 b. Luminaires should be compatible with the control system. Pole mounted luminaires should have addressable wireless nodes that are compatible. |
| 1.6 | Select new fixtures that respect the utilitarian aesthetic of the historic district’s original lighting.
 a. New lighting in the historic district should be compatible with the overall historic character of the buildings, sites, and streetscapes of the historic district.
 b. Select poles and luminaires that are simple in design, and do not create a new aesthetic or character.
 c. Select materials, colors, and finishes that are neutral and blend with the existing materials in the historic district.
 d. Reconstruction of missing fixtures or restoration of existing features from the historic district’s period of significance (1898-1930) is appropriate only if the materials, style and locations are clearly documented.
 e. It is not appropriate to introduce replica luminaires that mimic a time or place other than what is documented at Chautauqua, as these create a false sense of history. |
| 1.7 | Scale and size of luminaires should not overwhelm the historic setting and should be compatible with the scale of historic buildings and landscape.
 a. Integrate lighting into the historic setting through low mounting-level light fixtures such as bollards, directional lights mounted in unobtrusive locations, and pole mounted pedestrian scale lighting at 10’-18’ mounting height.
 b. Provide a consistency of scale and size for luminaires throughout the historic district. |

1 “Navigation” is the ability of someone to find their way across a landscape. “Wayfinding” is a lighting approach that provides points of light at the beginning and end of a path with low light levels in-between.
1. General Lighting Design Guidelines (continued)

			1.8 Lighting qualities should respect the historic character of the district.
			a. Light color should be warm and evoke the camp-like character of the historic district. Brightness of lighting should create a balance between the darkest dark areas and the lightest light, by using fully shielded, low glare fixtures.
			• Across lit areas, create a balance of lighting that eliminates glare.
			• Luminaires under XX lumen output should have a B-U-G rating of G=0
			• Luminaires over XX lumen output should have B-U-G rating of G=1.
			b. Light qualities, including brightness and color temperature, should be consistent throughout the historic district, providing a regular pattern of light.

			1.9 Luminaires should be easy to maintain and energy efficient.
			a. When existing lighting is replaced, select fixtures that are energy efficient, with appropriate light output per these guidelines.
			b. Pedestrian scale luminaires should have modular lighting components for replacement if failure occurs.
			c. Hardware should be standard tamper-proof.

			1.10 Sign Lighting
			a. Entrance signs and navigation signs may be illuminated to be legible. Design of sign lighting should be simple and unornamented, with no visibility by day.
			b. Illuminance levels should be kept at a minimum, and should be only enough for signage visibility.
			• Ensure that all lighting is Dark Sky compliant either with a Full Cutoff classification or a B-U-G rating of U=0.
			• Illuminance on the face of the sign should be between x and x vertical footcandles with ≤4:1 uniformity.
			• Operation should be on from dusk to close of business, or utilize an automatic on/off schedule to meet daily, weekly, and seasonal needs.
			• The lighting should not cause glare at normal viewing angles, obstruct the sign, or create daytime shadows.
			• Light sources should have a CCT of 3000K CRI and a CRI of ≥80.
			• The light should be directed at the sign with minimal spill.
			• The light source shall be fully shielded.

Section intentionally left blank
2. Public Space

Public spaces include areas of most pedestrian traffic and are most frequently visited. They are usually adjacent to, or near public buildings including the Auditorium, Dining Hall, Academic Hall, and Community House. Lighting in public spaces should recognize the essential “camp-like” character of the historic district. Lighting in Public Spaces should be subdued while providing adequate navigation and illumination of potential tripping hazards, including steps and curbs.

<table>
<thead>
<tr>
<th></th>
<th>2.1</th>
<th>In public spaces it is appropriate to light public entries to facilitate navigation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a. Provide lighting at building entrances but no additional architectural lighting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Lighting should be programmed to reflect evening activities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Architectural lighting only for aesthetic purposes is not appropriate, including accent, façade, and graze lighting and wall-washing.</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Lighting in public spaces should be subdued, warm, with minimal spill, glare, and light trespass.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Illuminance levels should be kept at a minimum, and should be only enough to provide safety and navigation in areas of circulation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure that all lighting is night sky compliant either with a Full Cutoff classification or a B-U-G rating of U=0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ambient lighting in public areas should not exceed an average of 3.0 foot candles in a contiguous area and maintain 10:1 uniformity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operation should be on from dusk to close of business, or utilize an automatic on/off schedule to meet daily, weekly, and seasonal needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Lighting should have a warm color.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remove lighting that produces harsh or bluish light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Light sources should have a CCT of 3000K CRI and a CRI of ≥80.</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Consider replacing non-historic lighting over time, including acorn lights and globe lights, with elements more in keeping with the historic utilitarian aesthetic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. In the interim, consider updating the acorn lights to have a consistent color temperature throughout and upgrade the fixture to be Dark Sky compliant.</td>
</tr>
</tbody>
</table>

Section intentionally left blank
3. Residential

The residential area includes cottages owned and leased by the CCA, those that are privately owned, and other buildings south of Clematis extending to the southern edge of the NHL. A conservative approach to lighting is recommended for the residential area. Lighting should be subdued and unobtrusive while providing navigation and illumination of potential tripping hazards, including swales and curbs. Lighting should be visually comfortable, with consistency in color temperature. Street lights should be designed to only illuminate the street, with minimal light trespass onto lawns and into buildings. The goal of residential lighting is to provide pools of light that serve as wayfinding lights, rather than a uniform, consistent background.

<table>
<thead>
<tr>
<th>3.1</th>
<th>Maintain a neighborhood character through a combination of porch/entry light and street lighting.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Lighting should provide a sense of safety and provide navigation to minimize tripping hazards.</td>
</tr>
<tr>
<td></td>
<td>b. Landscape lighting should be minimal. If used, it should be Dark Sky compliant.</td>
</tr>
<tr>
<td></td>
<td>c. Consider uniform address number lighting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2</th>
<th>Porch lighting should have low light levels, with a consistent warm color, and limited light trespass and glare.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Porch lights should only light the porch and building entry.</td>
</tr>
<tr>
<td></td>
<td>b. Porch lights should have 2700 - 3000K CRI light sources which should be shielded so that the source is not visible and with maximum lumen output ≤900 lumens.</td>
</tr>
<tr>
<td></td>
<td>c. Consider automatic timers for porch lights on cottages. Lighting may be connected to devices that automatically shut off when not needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.3</th>
<th>Street lights should provide pools of light to aid in navigation, with limited glare and light trespass.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. When replaced, manage streetlights so they can be dimmed significantly late at night, while still providing navigation and energy efficiency.</td>
</tr>
<tr>
<td></td>
<td>b. Street lights in residential areas should provide light for the streets and swales, not for the cottages and lawns.</td>
</tr>
<tr>
<td></td>
<td>c. Streetlights should have consistent levels across the lighting area, 3000K CRI or warmer, Type II distribution and employ a House Side Shield (HSS) when in front of a cottage to minimize light trespass. Maximum lumen output ≤4000, maximum bug rating of B1-U0-G1 (without HSS). The luminaire should be installed plumb for Dark Sky operation with the distribution aligned with the street.</td>
</tr>
</tbody>
</table>

Section intentionally left blank
4. Parking/Vehicular Circulation

Parking/Vehicular Circulation includes areas along major roadways and parking areas utilized primarily by visitors and staff during evening hours. These include the parking areas at the tennis court and Academic Hall, major intersections, and 12th Street between the picnic shelter and tennis court parking. This does not include parking for cottages or on-street parking. Lighting in parking areas should be adequate for navigation, and to address safety and security concerns.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>4.1</th>
<th>Lighting in parking/vehicular areas should provide a sense of security and navigation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a.</td>
<td>Lighting of vehicular circulation should be limited to major intersections, and should be designed to have limited spill light outside the intersection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>Parking areas should have no spill light outside of the parking area with low intensity levels within the parking area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a.</td>
<td>Maximum average approximately 0.2 footcandles with 20:1 uniformity. Use house side shields to minimize spill light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>Lighting in parking areas should be managed according to the varied activities occurring within the historic district.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a.</td>
<td>Parking area luminaires should be 3000K CRI, Type III distribution and employ a House Side Shield (HSS) to minimize spill light. Maximum lumen output ≤xxx, maximum bug rating of B1-U0-G1 (without HSS). The luminaire should be installed plumb for Dark Sky operation with the distribution aligned with the street.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b.</td>
<td>Manage lights for different night uses. Operation should be dusk to dawn with curfew setback.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4</td>
<td>Provide light for vehicular circulation at major vehicular and pedestrian conflict points.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td>Lighting may be appropriate in the following areas:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Street intersections to reduce potential conflicts.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pick-up/drop-off locations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vehicular entrances at Kinnikinic and 12th Street.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parking areas at the Academic Hall; Ranger Cottage; 12th Street; and Tennis Court.</td>
<td></td>
</tr>
</tbody>
</table>

Section intentionally left blank
Primary pedestrian routes are major pedestrian circulation routes, sidewalks, and pedestrian crossings. These include the route between the Auditorium and King’s Gate; the route from the Dining Hall to the Tennis Court parking; King’s Gate; the Arbor; the south side of Clematis Drive; and along Kinnikinic from Clematis to the Baseline entrance. Lighting along primary pedestrian routes should be visually comfortable, without glare, and should provide lighting for navigation and to illuminate tripping hazards. The use of wayfinding lighting is encouraged, to direct pedestrians to their destination with intermittent pools of light and beginning and ending points along paths.

5.1 Provide pedestrian lighting for navigation, to guide users to destinations.

a. Lighting should be visually comfortable without glare.

b. Lighting should be wayfinding lighting at intervals sufficient enough to provide adequate navigation, to see from one light location to another, whether a pole, lit building, or combination. Nominal spacing of 100’ while maintaining maximum 15:1 uniformity, to provide intermittent pools of light.

c. These routes should be illuminated with pedestrian scale luminaires. The luminaires should be Type II Distribution, Dark Sky, either with a Full Cutoff classification or a B-U-G rating of U=0, and 3000K CRI.

5.2 Operation of pedestrian lighting should be programmed to meet operational needs, based upon business and event hours.

Sensitively designed lighting may be appropriate in these areas:

- Interior of the Arbor and King’s Gate bus stop, taking care to protect historic fabric and integrate fixtures to be minimally visible.
- The pedestrian path between the Dining Hall, Auditorium and Tennis Court Parking area, and the stairs near the Tennis Court Parking area.
- The pedestrian path from the Auditorium to King’s Gate.
- Clematis Drive.
6. Park Areas

Park lighting areas include Chautauqua Green, Waterwise Garden and the Centennial Garden. The desire for lighting in the park areas is for these areas to remain dark, particularly within Chautauqua Green. In other park areas it may be desirable for low level wayfinding light with minimal spill light.

6.1 Park areas should remain dark within the interior of the space.

- **a.** Eliminate the use of up-lighting or directional lighting that is not Dark Sky compliant and produces glare.
 - Remove uplighting in the Centennial Garden.

6.2 Preserve the night sky within the interior space of the Chautauqua Green.

6.3 Provide adequate lighting for vehicular safety and navigation at the perimeter of park areas to facilitate navigation.

6.4 If flown at night, American flags should be illuminated to meet the Flag Code.\(^2\)

- **a.** Use only a single well shielded adjustable spotlight.
- **b.** Maximum output of the spotlight should not exceed 3,500 lumens and bee 3000K CRI and \(\geq 80\) CRI.
- **c.** Place the spotlight as close to the base of the flagpole as reasonable possible.

2 The Flag Code states it is the universal custom to display the flag only from sunrise to sunset on buildings and on stationary flag staffs in the open. However, when a patriotic effect is desired, the flag may be displayed 24 hours a day if properly illuminated during the hours of darkness. The American Legion interprets “proper illumination” as a light specifically placed to illuminate the flag (preferred) or having a light source sufficient to illuminate the flag so it is recognizable as such by the casual observer. https://www.legion.org/flag/faq
7. Open Space

Open Space includes the perimeter of the historic district boundary which borders the City of Boulder Open Space and Mountain Parks (OSMP) land. This includes the west, south, and southeast edges and perimeter of the historic district. These areas should remain dark in order to protect wildlife and scenic views. Lighting at trails is not appropriate, and the transition areas should remain unlit with minimal light trespass from other areas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>7.1 The interface with the Open Space and Mountain Parks should remain unlit with a minimum of light trespass.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.2 Efforts to minimize or eliminate spill light and light trespass should be employed when lighting adjacent areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Pole mounted luminaires should be oriented into the adjacent area and away from open space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. House side shields should be used with the Open Space on the house side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c. No light should be directed into Open Space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.3 Allow lighting at the Ranger Cottage and parking for OSMP evening events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Provide porch lighting at the Ranger Cottage and low light level streetlights within the parking area. Design these lights to only illuminate the immediate area, with limited spill light into the adjacent Open Space.</td>
</tr>
</tbody>
</table>

8. Baseline Road

Baseline Road includes the interface between the historic district and Baseline Road. Pedestrian crossings, intersections, and street parking at Baseline Road are included. Currently cobrahead-style streetlights are at each Baseline crosswalk. Within the historic district boundary, lighting should be provided at bus stops and at the vehicular entrance into the historic district from Baseline. While outside of the historic district boundary, these guidelines recommend that sufficient lighting be provided to facilitate safe pedestrian crossings at Baseline crosswalks and King’s Gate.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>8.1 Baseline Road should have sufficient lighting to provide safe pedestrian crossing and vehicular access.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. When upgraded, the streetlights should maintain the current nominal height, 3000K CRI, Type III distribution and employ a House Side Shield (HSS) when in front of a residence to minimize light trespass.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Maximum lumen output \leq4000, maximum bug rating of B1-U0-G1 (without HSS).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The luminaire should be installed plumb for Dark Sky operation with the distribution aligned with the street.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. Streetlights should be located at vehicular and pedestrian conflict points.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a. Provide adequate lighting at intersections along primary streets, chiefly at King’s Gate, and the Baseline / Kinnikinic entrance to the historic district.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b. A single streetlight at a crosswalk meets minimum lighting requirements. Using two streetlights, each one a half-mounting height before the crosswalk in the direction of oncoming traffic, provides maximum pedestrian visibility.</td>
</tr>
</tbody>
</table>